8217 TankWeld Epoxy Putty Stick Griffiths Equipment Limited Chemwatch: 5412-46 Version No: 5.1.1.1 Safety Data Sheet according to HSNO Regulations #### Chemwatch Hazard Alert Code: 2 Issue Date: 20/08/2020 Print Date: 24/08/2020 S.GHS.NZL.EN ### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### Product Identifier | Product name | 8217 TankWeld Epoxy Putty Stick | | |-------------------------------|---------------------------------|--| | Synonyms | 8217 | | | Other means of identification | Not Available | | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Sealants and adhesives. Use according to manufacturer's directions. #### Details of the supplier of the safety data sheet | Registered company name | Griffiths Equipment Limited | BWI | |-------------------------|---|---| | Address | 19 Bell Ave, Mount Wellington Auckland 1060 New Zealand | 1500 Ferntree Gully Road VIC 3180 Australia | | Telephone | +64 9 525 4575 | +61397306000 | | Fax | Not Available | Not Available | | Website | www.griffithsequipment.co.nz | Not Available | | Email | sales@griffithsequipment.co.nz | info@brownwatson.com.au | # Emergency telephone number | Association / Organisation | NZ NATIONAL POISONS CENTRE | | |-----------------------------------|-------------------------------|--| | Emergency telephone numbers | 0800 POISON or 0800 764-766 | | | Other emergency telephone numbers | International: +64 3 479-7227 | | # **SECTION 2 Hazards identification** # Classification of the substance or mixture | Classification [1] | Skin Corrosion/Irritation Category 3, Eye Irritation Category 2, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 3 | | |---|--|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | Determined by Chemwatch using GHS/HSNO criteria | 6.3B, 6.4A, 6.5B (contact), 9.1C | | #### Label elements Hazard pictogram(s) Signal word Warning #### Hazard statement(s) | H316 | Causes mild skin irritation. | |------|--| | H319 | Causes serious eye irritation. | | H317 | May cause an allergic skin reaction. | | H412 | Harmful to aquatic life with long lasting effects. | Chemwatch: **5412-46**Version No: **5.1.1.1** # Page 2 of 11 8217 TankWeld Epoxy Putty Stick Issue Date: **20/08/2020**Print Date: **24/08/2020** #### Precautionary statement(s) Prevention | P280 Wear protective gloves/protective clothing/eye protection/face protection. | | | |---|--|--| | P261 | P261 Avoid breathing dust/fumes. | | | P273 | Avoid release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | #### Precautionary statement(s) Response | P321 | Specific treatment (see advice on this label). | |----------------|--| | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | #### Precautionary statement(s) Storage Not Applicable ### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|--| | 25068-38-6 | 10-30 | bisphenol A diglycidyl ether polymer | | 14808-60-7 | 0.1-1 | silica crystalline - quartz | | Not Available | balance | Ingredients determined not to be hazardous | #### **SECTION 4 First aid measures** ### Description of first aid measures If this product comes in contact with the eyes: - Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. # Skin Contact If skin contact occurs: - Immediately remove all contaminated clothing, including footwear. - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation. - Inhalation - If fumes, aerosols or combustion products are inhaled remove from contaminated area. - Other measures are usually unnecessary. #### Ingestion - If swallowed do **NOT** induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - Seek medical advice. #### Indication of any immediate medical attention and special treatment needed $Treat\ symptomatically.$ ### **SECTION 5 Firefighting measures** # Extinguishing media - ► Foam - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. - ▶ Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters Chemwatch: 5412-46 Page 3 of 11 Version No: 5.1.1.1 # 8217 TankWeld Epoxy Putty Stick Issue Date: 20/08/2020 Print Date: 24/08/2020 # Fire Fighting - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Use water delivered as a fine spray to control fire and cool adjacent area. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. - Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions). - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an - In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC). - When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LELs for the vapors/mists or dusts. - A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. # Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic
charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - ▶ All movable parts coming in contact with this material should have a speed of less than 1-meter/sec - A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source. - One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours). - Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)): LIT generally falls as the thickness of the layer increases Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes May emit corrosive fumes #### **SECTION 6 Accidental release measures** Fire/Explosion Hazard #### Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up - Clean up waste regularly and abnormal spills immediately. - Avoid breathing dust and contact with skin and eyes ▶ Wear protective clothing, gloves, safety glasses and dust respirator. - ▶ Use dry clean up procedures and avoid generating dust. - Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use). - Dampen with water to prevent dusting before sweeping. ## Minor Spills - Place in suitable containers for disposal. - In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground water - If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and leaks - For small spills, reactive diluents should be absorbed with sand. - ▶ Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by all means available, spillage from entering drains or water courses. #### Consider evacuation (or protect in place). #### No smoking, naked lights or ignition sources. - **Major Spills** Increase ventilation. - Stop leak if safe to do so. - ▶ Water spray or fog may be used to disperse / absorb vapour. - Contain or absorb spill with sand, earth or vermiculite - Collect recoverable product into labelled containers for recycling. Chemwatch: 5412-46 Page 4 of 11 Issue Date: 20/08/2020 Version No: 5.1.1.1 # 8217 TankWeld Epoxy Putty Stick Print Date: 24/08/2020 - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains - ▶ After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captured, collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work. Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 Handling and storage** #### Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - Drganic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Safe handling - Establish good housekeeping practices. - ▶ Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. - b Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used - Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition - ▶ Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national - Do not empty directly into flammable solvents or in the presence of flammable vapors. - Fig. The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. # Other information - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - Store away from incompatible materials and foodstuff containers - Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. - For major quantities: - Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). - Figure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities # Conditions for safe storage, including any incompatibilities #### Suitable container - Polyethylene or polypropylene container. - Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. #### Storage incompatibility - Avoid reaction with oxidising agents, bases and strong reducing agents. - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. #### SECTION 8 Exposure controls / personal protection #### **Control parameters** # Occupational Exposure Limits (OEL) #### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|-----------------------------|------------------------|------------|---------------|---------------|---------------| | New Zealand Workplace
Exposure Standards (WES) | silica crystalline - quartz | Quartz respirable dust | 0.05 mg/m3 | Not Available | Not Available | Not Available | Chemwatch: 5412-46 Page 5 of 11 Version No: 5.1.1.1 #### 8217 TankWeld Epoxy Putty Stick Issue Date: 20/08/2020 Print Date: 24/08/2020 | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |--------------------------------------|---|-------------|-----------|-------------| | bisphenol A diglycidyl ether polymer | Epoxy resin includes EPON 1001, 1007, 820, ERL-2795 | 90 mg/m3 | 990 mg/m3 | 5,900 mg/m3 | | silica crystalline - quartz | Silica, crystalline-quartz; (Silicon dioxide) | 0.075 mg/m3 | 33 mg/m3 | 200 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--------------------------------------|---------------------|---------------| | bisphenol A diglycidyl ether polymer | Not Available | Not Available | | silica crystalline - quartz | 25 mg/m3 / 50 mg/m3 | Not Available | #### **Occupational Exposure Banding** | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |--------------------------------------
--|----------------------------------| | bisphenol A diglycidyl ether polymer | E | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | #### **Exposure controls** #### Appropriate engineering controls General exhaust is adequate under normal operating conditions. #### Personal protection - Safety glasses with side shields. - Chemical goggles. # Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalentl #### Skin protection See Hand protection below ## NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. # Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than $0.35\ mm$, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons. The performance, based on breakthrough times ,of: Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent Continued... # Hands/feet protection Chemwatch: 5412-46 Page 6 of 11 Version No: 5.1.1.1 #### 8217 TankWeld Epoxy Putty Stick Issue Date: 20/08/2020 Print Date: 24/08/2020 - Butyl Rubber ranges from excellent to good - Nitrile Butvl Rubber (NBR) from excellent to fair. - Neoprene from excellent to fair Polyvinyl (PVC) from excellent to poor As defined in ASTM F-739-96 - Excellent breakthrough time > 480 min - Good breakthrough time > 20 min - Fair breakthrough time < 20 min - Poor glove material degradation Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively) - DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin). - DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene. - nitrile rubber. - butvl rubber. - In fluorocaoutchouc. - polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. # **Body protection** See Other protection below # Other protection - Overalls. P.V.C apron. - Barrier cream. - Skin cleansing cream. - ▶ Eye wash unit. #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | A P1
Air-line* | - | A PAPR-P1 | | up to 50 x ES | Air-line** | A P2 | A PAPR-P2 | | up to 100 x ES | - | A P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | A PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - F The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - ► Try to avoid creating dust conditions. # **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Dark grey to black solid with a pungent and sulfurous odour; partly mixes with water. | | | |--|---|---|----------------| | Physical state | Solid | Relative density (Water = 1) | 2.247 | | Odour | Not Available | Partition
coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | >200 | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | >93.3 (Setaflash) | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | Page **7** of **11** Version No: 5.1.1.1 # 8217 TankWeld Epoxy Putty Stick Issue Date: 20/08/2020 Print Date: 24/08/2020 | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Applicable | |---------------------------|-----------------|----------------------------------|----------------| | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Partly miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | 20.6 | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** # Information on toxicological effects | Chronic | Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Based on experience with similar materials, there is a possibility that exposure to the material may reduce fertility in humans at levels which do not cause other toxic effects. Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage male reproductive organs and sperm. Glycidyl ethers can cause genetic damage and cancer. | |--------------|--| | Еуе | This material can cause eye irritation and damage in some persons. Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe damage to the cornea. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. | | Skin Contact | This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterized by redness and swelling, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation when applied daily for 4 hours over 20 days. Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | Ingestion | Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. However, swallowing larger amounts may cause injury. Animal testing showed that a single dose of bisphenol A diglycidyl ether (BADGE) given by mouth, caused an increase in immature sperm. The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. | | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. In animal testing, exposure to aerosols of reactive diluents (especially o-cresol glycidyl ether, CAS RN:2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus and respiratory tract. | | | | | TOXICITY | IRRITATION | |---|---------------| | Not Available | Not Available | | TOXICITY | IRRITATION | | dermal (mouse) LD50: >1270 mg/kg ^[2] | Not Available | | dermal (rat) LD50: >1200 mg/kg ^[2] | | | Oral (mouse) LD50: >500 mg/kg ^[2] | | | Oral (mouse) LD50: 15600 mg/kg ^[2] | | | Oral (rat) LD50: >1000 mg/kg ^[2] | | | Oral (rat) LD50: 11400 mg/kg ^[2] | | | Oral (rat) LD50: 13600 mg/kg ^[2] | | | TOXICITY | IRRITATION | | 0.3 mg/kg ^[2] | Not Available | | 50 mg/kg ^[2] | | | | Not Available | Chemwatch: **5412-46**Version No: **5.1.1.1** # Page 8 of 11 8217 TankWeld Epoxy Putty Stick Issue Date: **20/08/2020**Print Date: **24/08/2020** Oral (rat) LD50: =500 mg/kg^[2] Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Animal testing over 13 weeks showed bisphenol A diglycidyl ether (BADGE) caused mild to moderate, chronic, inflammation of the skin. Reproductive and Developmental Toxicity: Animal testing showed BADGE given over several months caused reduction in body weight but had no reproductive effects. Cancer-causing potential: It has been concluded that bisphenol A diglycidyl ether cannot be classified with respect to its cancer-causing potential in humans. Genetic toxicity: Laboratory tests on genetic toxicity of BADGE have so far been negative. Immunotoxicity: Animal testing suggests regular injections of diluted BADGE may result in sensitization. BISPHENOL A DIGLYCIDYL Consumer exposure: Comsumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Testing has not found any evidence of hormonal disruption. The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and
secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor. Bisphenol A may have effects similar to female sex hormones and when administered to pregnant women, may damage the foetus. It may also damage male reproductive organs and sperm. Glycidyl ethers can cause genetic damage and cancer. # SILICA CRYSTALLINE - QUARTZ WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS The International Agency for Research on Cancer (IARC) has classified occupational exposures to **respirable** (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung disease. Intermittent exposure produces; focal fibrosis, (pneumoconiosis), cough, dyspnoea, liver tumours. * Millions of particles per cubic foot (based on impinger samples counted by light field techniques). NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles. | Acute Toxicity | × | Carcinogenicity | X | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | X | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | X | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | x | | Mutagenicity | × | Aspiration Hazard | X | Legend: — Data either not available or does not fill the criteria for classification Data available to make classification # **SECTION 12 Ecological information** ### Toxicity | Endpoint | Test Duration (hr) | Species | Value | Source | |------------------|--|---|---|--| | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Endpoint | Test Duration (hr) | Species | Value | Source | | EC50 | 48 | Crustacea | ca.2mg/L | 2 | | Endpoint | Test Duration (hr) | Species | Value | Source | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Not Available Endpoint EC50 Endpoint Not | Not Available Endpoint Test Duration (hr) EC50 48 Endpoint Test Duration (hr) Not Not Available | Not Available Not Available Not Available Not Available Endpoint Test Duration (hr) EC50 48 Crustacea Endpoint Test Duration (hr) Species Not Available Not Available | Not Available Not Available Not Available Endpoint Test Duration (hr) Species Value EC50 48 Crustacea ca.2mg/L Endpoint Test Duration (hr) Species Value Not Not Available Not Available Not | Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Issue Date: **20/08/2020**Print Date: **24/08/2020** #### DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 Disposal considerations** #### Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. #### Waste Management Production waste from epoxy resins and resin systems should be treated as hazardous waste in accordance with National regulations. Fire retarded resins containing halogenated compounds should also be treated as special waste. Accidental spillage of resins, curing agents and their formulations should be contained and absorbed by special mineral absorbents to prevent them from entering the environment. Contaminated or surplus product should not be washed down the sink, but preferably be fully reacted to form cross-linked solids which is non-hazardous and can be more easily disposed. #### Product / Packaging disposal Finished articles made from fully cured epoxy resins are hard, infusible solids presenting no hazard to the environment. However, finished articles from flame-retarded material containing halogenated resins should be considered hazardous waste, and disposed as required by National laws. Articles made from epoxy resins, like other thermosets, can be recycled by grinding and used as fillers in other products. Another way of disposal and recovery is combustion with energy recovery. Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used. M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010 - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 ### Disposal Requirements Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance. Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately. #### **SECTION 14 Transport information** #### Labels Required | Education Reduition | | |---------------------|----------------| | Marine Pollutant | NO | | HAZCHEM | Not Applicable | Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 Regulatory information** Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard Version No: **5.1.1.1** # 8217 TankWeld Epoxy Putty Stick Issue Date: **20/08/2020**Print Date: **24/08/2020** | HSR Number | Group Standard | | |------------|---|--| | HSR002670 | Surface Coatings and Colourants (Subsidiary Hazard) Group Standard 2017 | | # bisphenol A diglycidyl ether polymer is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Approved Hazardous Substances with controls
New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) #### silica crystalline - quartz is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1 : Carcinogenic to humans New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity (Closed Containers) | Quantity (Open Containers) | |----------------|------------------------------|----------------------------| | Not Applicable | Not Applicable | Not Applicable | #### **Certified Handler** Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information #### **Tracking Requirements** Not Applicable #### **National Inventory Status** | National inventory Status | | | |-------------------------------|---|--| | National Inventory | Status | | | Australia - AIIC | Yes | | | Australia Non-Industrial Use | No (bisphenol A diglycidyl ether polymer; silica crystalline - quartz) | | | Canada - DSL | Yes | | | Canada - NDSL | No (bisphenol A diglycidyl ether polymer; silica crystalline - quartz) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (bisphenol A diglycidyl ether polymer) | | | Vietnam - NCI | Yes | | | Russia - ARIPS | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | #### **SECTION 16 Other information** | Revision Date | 20/08/2020 | |---------------|------------| | Initial Date | 23/07/2020 | #### **SDS Version Summary** | Version | Issue Date | Sections Updated | |---------|------------|-------------------------------| | 4.1.1.1 | 13/08/2020 | Name | | 5.1.1.1 | 20/08/2020 | Classification, Environmental | #### Other information Chemwatch: 5412-46 Page 11 of 11 Issue Date: 20/08/2020 Version No: 5.1.1.1 8217 TankWeld Enoxy Putty Stick Print Date: 24/08/2020 rsion No: 5.1.1.1 8217 TankWeld Epoxy Putty Stick Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC – TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.